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ABSTRACT  
Synthetic Aperture Radar (SAR) tomography is a technique that has been intensely developed in the last 
years for the analysis of complex scenarios. SAR Tomography is based on the principle of synthesizing a 
large aperture along the height direction to provide 3D resolution capabilities to imaging radar sensors. 
SAR tomography can be applied to the imaging of scattering distributed along the vertical direction such as 
forest mapping with lower frequency (L and P-Band) SAR systems. For high frequency (C and X-Band) 
sensors, for which penetration is very limited and the scattering mainly occurs at the surface level, SAR 
tomography allows tackling the problems that limits classical SAR Interferometry, i.e. related to the 
interference of scatterers within the same pixels due to the occurrence of layover. This paper aims to provide 
an overview of the technique by explaining the basics concepts of SAR tomography and illustrating the 
advantages over classical SAR interferometry specifically for the application to the imaging and monitoring 
of urban areas.  

1.0 INTRODUCTION 

Synthetic Aperture Radar (SAR) systems exploit the possibility to synthesize a large antenna along the 
azimuth direction to achieve a sharp beam that allows reaching resolutions up to the order of 1m. This option 
is possible thanks to the capability to transmit a coherent radiation, i.e. with controlled oscillations. SAR 
focusing is the operation that allows the so called “azimuth radar beam sharpening” and therefore, together 
with large transmitted bandwidth along the range, the generation of high resolution 2D images of the 
backscattered radiation [1]. The reality is 3D and the resulting image represents only an integration along the 
elevation direction, also referred to as normal-to-slant-range direction, of the 3D scene scattering properties 
onto the 2D azimuth-range plane. 

Assuming that the radiation penetration is negligible and that the mapping from 3D to the 2D (azimuth-range 
plane) is injective, SAR Interferometry (InSAR) is a technique able to provide the reconstruction of the 3D 
scattering properties, i.e., the scene topography (Digital Elevation Model), by exploiting at least two 
antennas that image the scene from slightly different look angles. Key point of this technique is the 
determination, on a pixel-by-pixel basis, of the off-nadir angle of the effective phase centre of the scatterers 
within the resolution cell. This information, in addition to the knowledge of the azimuth and range pixel 
coordinates provided by the SAR focusing operation, allows the complete localization of the (mean or 
dominant) scattering mechanism and therefore the reconstruction of the height scene profile [1], [2]. 
Differential Interferometry (DInSAR), is a further advance of InSAR for the detection and mapping of 
ground deformations which has considerably increased the use of SAR data in geophysics, hydrology and in 
general for civilian and surveillance applications [3].  

Either due to the intrinsic side-looking characteristic of the imaging system (which discriminate distances 
and hence is affected by layover) or to the penetration of the radiation below the surface mapping from 3D to 
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the 2D (azimuth-range) domain can be surjective. Hence target characterization and localization cannot be 
carried out neither by two measurements (i.e. by a single baseline) nor via classical interferometric 
approaches.  

The recent advances of the space technology involving constellations of satellites, and the planning for future 
missions involving formation of satellites able to acquire simultaneous (multi-baseline) SAR images 
repeatedly over the time, have pushed the research in the development of new techniques capable of 
processing, jointly and coherently, stacks of SAR images. Available archives for many satellites are filled 
with datasets acquired over the same scene at different times and with varying imaging geometries (spatial 
baselines).  

3D SAR Tomography [4]-[8], also known as 3D SAR focusing or 3D SAR imaging, represents a very recent 
improvement of SAR interferometry that allows obtaining additional information from multi-baseline SAR 
dataset by overcoming the limitation of available techniques. The basic principle of 3D imaging SAR is 
rather simple: it exploits (see Figure 1) repeated passes of the satellite to synthesize, similarly to the azimuth 
direction, a large antenna also along the elevation direction thus leading to a beam sharpening that allows 
investigating the vertical backscattering properties. To achieve 3D imaging capabilities the processing 
involves two steps: the azimuth and range focusing for the generation of 2D high-resolution images and the 
elevation focusing for achieving as well as a resolution capability in the third dimension (elevation 
direction). The first step is, typically, carried out via standard SAR focusing algorithms [2]; the second step 
requires an additional pre-processing stage such as image co-registration and phase calibration [3]. 

 

Figure 1: 3D SAR Focusing Principle for Achieving a Sharp Beam Angular  
Scanning by Exploiting Multiple Antennas in the Plane Orthogonal  

to the Flight Track (orthogonal to the plane of the figure). 

Due to the fact that available spaceborne systems mainly operate at high frequencies (C-Band and X-Band), 
with the current technological state, spaceborne 3D SAR imaging allow mainly surface imaging. 
Nevertheless, separation of multiple signal contributions for surface scattering in layover, such as mapping 
height in rough topography and urban areas, is possible. With airborne systems, operating at lower 
frequencies (L or P-band), 3D SAR imaging permits direct imaging of semi-transparent media [8] 
evidencing a volume scattering (forest, arid and ice regions) thus allowing potential use in several fields such 
as geology, biomass estimation and monitoring and detection of buried structures for archaeological and civil 
applications.  
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In addition to this, when multiple baselines are obtained by using repeated passes of satellites (multitemporal 
acquisitions) 3D imaging can be extended to the time dimension. 4D and Multi-D SAR imaging allows 
imaging and monitoring complex scenarios, such as urban areas, with improved performances with respect 
to classical interferometric techniques such as Persistent Scatterers Interferometry (PSI) [9]-[10]. Future 
missions involving formation of small satellite, thus allowing obtaining simultaneous multibaseline SAR 
acquisitions repeatedly over the time, could further develop this research field. 

This paper aims to provide a discussion about the principles of SAR Tomography by summarizing the main 
achievements in terms of advanced processing algorithms such as 4D and MultiD SAR imaging and to show 
applications of the technique to simulated and real spaceborne data. 

2.0 BASICS OF SAR TOMOGRAPHY 

2.1 Geometry and Models for 3D SAR Imaging 
We refer to the geometry of the MP 3D-SAR system of Figure 1 where we consider the availabilities of  
N antennas (possibly implemented by means of repeat passes of a single antenna sensor) over different 
orbits, say S1,..., SN. characterized by spatial offsets that provide angular imaging diversity. A Cartesian 
reference system is adopted to describe the geometry: zrx ,, are the azimuth, range and height axes, 
respectively; s  (orthogonal to the azimuth-range plane) is the elevation.  

Under the Born weak-scattering approximation, we have the following expression for the focused data the 
azimuth range sample ( )rx ′′,  at the generic (n-th) antenna: 

 ( ) ( ) ( ) ( )
∫∫∫

−
−′−′=′′

srxRj

n
nsrxdsrrxxfdrdxrx

,,4

e ,,,,ˆ λ
π

γγ  (1) 

where λ  is the operating wavelength, ( )rsxRn ,,  represents the distance of antenna n (n=1,…,N) from the 
generic point target, see Figure 2, ( )⋅γ  is the function that models the 3D (volumetric) scene scattering 
properties and ( )⋅f  is the (azimuth-range) point spread function (PSF). Equation (1) shows that the generic 
SAR image is the result of integration along the elevation direction that performs a mapping of 3D scene 
backscattering properties onto the 2D azimuth - (slant) range plane. 

 

Figure 2: 3D SAR Focusing Geometry. 
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In 3D SAR imaging azimuth and range focusing, as well as image registration are carried out as first 
processing stage. To simplify the notation in the following we assume the azimuth (Doppler) and range 
(transmitted) bandwidths are large enough to allow approximating the post focusing PSF with a 2D Dirac 
generalized function. Under these assumptions, for a given pixel ),( rx , the signal sample nh  measured at the 
n-th antenna is given by: 

 
( )

∫
−

= dsesh
sRj

n
nλ

π

γ
4

)(  (2) 

and the integral is assumed to involve an interval with extension 2a (support of the scene along the elevation 
direction). A procedure, referred to as de-ramping compensation with respect to a reference point O, is at this 
stage applied to compensate for the phase quadratic distortion due to the Fresnel phase approximation, see 
Figure 3. This operation involves the following multiplication by the distance of the reference point (which is 
typically adapted on a pixel basis onto an available external DEM): 
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where nb  is the orthogonal baseline of the n-th antenna with respect to the master antenna. The last 
approximation is the result of an expansion of the difference ( ) ( )0nn RsR −  and of the association of an 
inessential s2-dependent term in the unknown backscattering function.  

 

Figure 3: Geometry Relevant to the De-Ramping Procedure. 

Equation (3) shows that the relation between the received signal (for n=1,…,N) and the unknown 
backscattering function is a Fourier series.  
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By collecting ng  in a data vector g , by sampling )(sγ  in ms  (m=1,…,M) and by collecting the samples in a 
vector γ , the problem to reconstruct the unknown samples of )(sγ consists of inverting the following linear 
system: 

 Aγg =
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−−

−−

MNN

M

sjsj
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ee

ee

πζπζ
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22

22

1
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,  (4) 

where A is a NxM matrix (model or sensing matrix) whose (N-dimensional) column vectors: 

  [ ] Mmee mNm sjsj
m ,...1,....., 22T 1 == −− πζπζa ,  (5) 

are referred to as steering vectors associated with the elevations ms  (m=1,…,M), i.e. with the angle  
rsm /  ( )2ar >> .  

In general, M is chosen at least equal, but typically much larger than N so to preserve the spatial details of the 
reconstructed backscattering function contained in the measurements.  

2.2 Inversion via Beam-Forming 
A very simple and robust inversion of (3) ((4) in the discrete case) can be carried by using the conjugate 
operator or hermitian, (i.e., transpose conjugate) in the discrete case: 

 gLγ H1ˆ
N

=   (6) 

which, in terms of elements of the reconstructed vector, provides: 

 gaH1ˆ mm N
=γ   (7) 

for the backscattering at the elevation sample m (the scaling factor is introduced to preserve the power of the 
backscattering signal). The reconstruction algorithm is referred to as Beam-Forming (BF) [5], [6] and has an 
equivalent interpretation in the framework of matched filtering. 

To fully understand the rational of the above inversion method we refer to a simple case in which it is 
assumed that baselines are uniformly distributed with a baseline separation of b∆ : this case is also referred 
to Uniform Linear Array (ULA). The following condition: 

 
a
rb

4
λ

=∆   (8) 

that is a spectral separation of:  

 
a2

1
=∆ζ   (9) 

associated with a sampling of the spectrum of the function )(sγ  to the Nyquist limit [11].  
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Letting N=M the matrix A assumes a Vandermonde structure [12]. Choosing a separation for the samples in 
s of: 

  
N
as 2

=∆   (10) 

it results that: 

 Nmee
Nm

Njm
Nj

m ,...1,.....,
22

T =











=

−−
ππ

a   (11) 

In this conditions the matrix A becomes then a DFT matrix that is (but for a proper scaling) a unitary matrix: 
the hermitian matrix in (6) becomes therefore an inverse matrix. According to the Nyquist sampling, the 
highest achievable resolution is given by the following Rayleigh limit: 

 
N
a

B
rs 2

2
==

λδ  bNB ∆=   (12) 

where bNB ∆=  is the total baseline span. 

In the most general case of non-uniform baselines sampling, the (in general non diagonal) MxM matrix AHA 
describes the imaging Point Spread Function along the elevation achieved by BF. It is worth to point out that 
in the case M>N, AHA has a maximum rank of N, so that it cannot be in any case a diagonal matrix. 
Accordingly, the maximum spatial resolution is Na2  and can never reach the sampling step Ma2 . 
Moreover, the reconstruction shows the presence of sidelobes, which can reach also high levels in the 
presence of uneven baseline distribution. 

3.0 ADVANCED 3D INVERSION METHODS 
BF inversion described in the previous section is a simple, effective and robust technique that founds on the 
theory of matched filters. This section gives a brief review of advanced 3D inversion algorithms, able to 
achieve either or both super-resolution improvements and sidelobes reduction. 

3.1 Inversion via Singular Value Decomposition 
SVD is a tool that allows analysing the property of a matrix, or better of compact operator in the more 
general case of transformation of continuous signals, and implementing an effective regularized and 
“controlled”, inversion of linear problems. By applying the SVD analysis [12], the sensing matrix A is 
amenable of a representation in terms of a singular system { }N

nnnn 1,, =uvσ , where nσ  are the eigenvalues of 
A, nv  and nu  are the orthonormal basis for the subspace of the visible objects (subspace normal to the null-
space) and the orthonormal basis for the range of the operator A, respectively.  

The introduction of SVD allows writing the following two fundamental relations that connect the data 
(measurable) and the object (unknown) spaces [12]:  

 ∑ =
=

N

n nnn1
Hγvug σ  (13) 

 ∑ =
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N
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n

1
H1 guvγ

σ
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Equations (13) and (14) represent the fundamental result of the SVD analysis: the first equation describes 
how the data is “summed” starting from projections of the unknown γ . It states specifically that in principle 
all the different vectors ku  concur to the composition of the observed vector g : each contribution is, 
however, weighted by the associated singular value nσ  thus leading to a strengthening or weakening of the 
mapping in the given direction ku  depending on the magnitude of the singular values.  

Singular values are inverted in the inversion formula in (14) to generate the reconstruction of the unknown. 
In the real case, where data are corrupted by the noise, the presence of low singular values highlights the 
involvement of critical (weak) directions where the signal could be even overwhelmed by the noise. 
Accordingly, should not those directions be identified and properly handled with during the inversion 
process, high instabilities in the output reconstruction could be observed as a result of the noise amplification 
[13].  

Low singular values are generally present in the presence of a non-uniform baseline distribution, which 
causes an uneven distribution of the spectral samples, see (3). With reference to the uniform baseline 
distribution sampling of b∆  (i.e. uniform sampling in nζ ) and a scene extension again of a2 , the following 
parameter A can be considered as an indicator of the “spectrum sampling degree”: 

 
r

baaA
λ

ζ ∆
=∆=

42   (15) 

Figure 4 shows the different cases related to 1>A , 1<A  and 1=A  . The case 1>A  corresponds to a scene 
extension that is larger than the limiting length associated with the spectral sampling, thus generating spatial 
aliasing of the reconstruction along the elevation. This case is referred to undersampling and the singular 
values (generally ordered according to the magnitude) do not show a significant decay thus translating the 
peculiarity of the acquisition system operate under loss conditions from the sampling viewpoint.  

 

Figure 4: Cases of Oversampling, Nyquist Sampling, and Under-Sampling  
of the Spectrum for a Uniform Baselines Distribution. 
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The case 1=A , previously described and corresponding to a sampling at the Nyquist limit: in this case the 
singular values are all constant in such a way to provide, accordingly to (13) and (14) , the equivalence 
between A-1 and AH. Finally, the case 1<A  corresponds to a scene extension that is smaller than the limit 
corresponding to the spectral sampling. The spectrum is in this case oversampled, and the oversampling 
generates a decay of the singular values that translates the redundancy of the sampled information. Such a 
redundancy can be used to achieve super-resolution in the reconstruction, i.e. Nas 2<δ .  

A more exhaustive discussion about this topic can be found in [6], [14] and [15]. 

It is clear that, in the case of a non-uniform baseline distribution, by substituting b∆  with the averaged value 
of the (consecutive) baseline separation the above considerations can be still used to provide useful 
indications about the behaviour of the singular values.  

It is also clear that in the presence of a dynamic of the singular values, the ratio between the maximum and 
minimum singular values (the so called conditioning number) can increase considerably thus translating the 
presence of an ill-conditioning of the matrix A that must be accounted for at the inversion stage to avoid 
noise amplification [13].  

Based on the above consideration and on (14) a general way to reconstruct γ  is therefore to use 
reconstruction formula: 

 ∑ =
=

N

n
H
nni1

ˆ guvγ µ  (16) 

where ( )iii σµµ = . 

A simple choice is to restrict the solution space by considering only the singular functions corresponding to 
singular values that assume high values: in this way only sufficiently strong directions of the decomposition 
are kept at the inversion stage. This procedure is usually referred to as Truncated SVD (TSVD) [6]: 
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=
elsewhere0

,...,1 NKii
i

σ
µ  (17) 

Another possibility is given by the following choice:  

 22 ασ
σµ
+

=
i

i
i  (18) 

which regularizes the inversion by imposing controlling the square norm of the solution, i.e.: 

 [ ]
2

2
2minargˆ γLγgγ

γ
α+−=  (19) 

where 
2⋅ is the L2 norm in C M . The solution provided by the choice in (18) is equivalent to the Wiener filter 

[16], in particular to the filter that achieves the solution with a minimum mean square error criterion in the 
presence of additive white noise. 

The singular system in (13) and (14) is depending on the specification of 2a in (3), i.e., of the size of the 
scene in the elevation direction. Allowing 2a to be independent of ( )br ∆2λ  (with b∆  being the average 
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baseline separation) gives the possibility to take benefit of the available a-priori information about the 
unknown support within the reconstruction algorithm. Therefore, beside the capability to avoid unreliable 
directions within the inversion process, thus regularizing the inversion, SVD allows also in some cases 
super-resolution imaging [6].  

 

Figure 5: Example of 3D SAR Focusing with SVD. Left column: top and lateral optical view of the 
S. Paolo Stadium (x is azimuth and r is the range). Middle column pair: 3D focused sections  

in the elevation-azimuth plane (i.e. constant range) without (left) and with (right) azimuth  
spatial averaging (multilook). Right column: standard azimuth (horizontal)  

range (vertical) image with the highlight of the sections corresponding  
to the azimuth-elevation section in the middle column pair. 

It is important to underline that, although the dimension of the acquired data is usually very large, each full 
resolution SAR image is indeed typically several thousands of pixels in both directions. The inversion of the 
A operator can be, however, commonly made just once in the azimuth direction and upgraded only in range 
to account for the (typically slow in the satellite case) variations of the orthogonal baseline components due. 
In addition to this, the number of acquisitions is commonly not large; hence the computational cost of the 
reconstructing algorithm is rather low. 

3.2 Capon Inversion 
A more general expression for the evaluation of nγ̂  is given by: 

 gfm
Hˆ =mγ  (20) 

where H
mf  is the filter for the estimation of ( )mm sγγ = . 
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Letting [ ]H
g E gg=C , which is the data covariance matrix, a solution obtained from the spectral estimation 

theory such that: 
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i.e., a solution that achieves the minimum output power, subject to unitary gain at the frequency of interest 
(Capon filter), is provided by [5]: 
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i.e.: 

 ( )
mm aa 1-

g
H

2 1ˆ
C

=msE γ  (23) 

It is interesting to note that when IC =g , i.e. in the case of a constant data spectrum power, the Capon 
filtering leads to Nm maf = , i.e. to the classical beam-forming (matched filter). The advantage of the 
Capon filer is the achievement of high super-resolution for line spectra (i.e. concentrated scatterers along s). 
However, a disadvantage of the Capon filter is the need to estimate the data covariance matrix. This 
estimation is carried out via spatial averaging (i.e. multilook) thus leading to a loss of spatial resolution.  

3.3 Compressed Sensing 
Compressed sensing (CS) [17], [18] is a recent technique used in linear inversion problems for signal 
recovery that takes benefit of the hypothesis that the signal to be reconstructed have (in some basis) a sparse 
representation, i.e. a small number of non-zero entries. Under certain assumptions of the measurement 
matrix, the signal can be reconstructed from a small number of measurements.  

SAR Tomography in urban areas is a favorable application scenario for CS because, for typical operative 
frequencies, the scattering occurs only on some scattering centers associated with ground, façades and roofs 
of ground structures [19]. From a mathematical point of view, CS looks for the best (in the square norm 
sense) solution of:  

 Aγg =   (24) 

under the hypothesis that only S<<M entries of γ are different by zero (S= 0γ , where 0⋅ is the L0 norm in  
C M ), with a number of measurements N generally much lower than M . This latter situation is due to the fact 
that a fine sampling of the output is required to correctly achieve super-resolution reconstructions. In other 
words, CS looks for the solution of the following problem: 

 ε<−= 20 subject tominargˆ Aγgγγ
γ

 (25) 
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The problem can be also generalized to the case in which 0γ is close to M but can be assumed sparse under 

a linear transformation Bxγ =  with MS <=0x where B  is not necessary an orthonormal transformation 
but generally an over-complete dictionary. However, in the case in which SAR Tomography is applied to 
urban areas, the signal is γ  has intrinsically a sparse nature ( IB = ).  

Under certain conditions it can be shown that the solution of the following L1 norm: 

  ε<−= 21 subject tominargˆ Aγgγγ
γ

 (26) 

or equivalently: 

 { }
21minargˆ Aγgγγ

γ
−+= δ  (27) 

provides the same solution of (25): The advantage is that the problem in (26) or (27), referred to as Basis 
Pursuit De-Noising (BPDN) [18], is more easily treatable from a numerical point of view, with respect to the 
problem in (25). As matter of fact BPDN frames in the context of Linear Programming where efficient 
solvers can be found. 

 

Figure 6: Example of Reconstruction of SVD (Red Line) and CS (Blue Line) on Simulated Data 
with Baseline Distribution According to Real Passes of the TerraSAR-X Satellite for Different  

Levels of Noise (Rayleigh resolution: 40m). Courtesy of X. Zhu and R. Bamler, DLR. 

A number of theorems for sparse reconstruction are available in the literature. CS is a non-parametric 
inversion method that allows to achieve tomographic reconstructions (at full resolution) of urban scenarios 
with better performances in terms elevation resolution with respect to BF and SVD [20], [21], moreover with 
respect to Capon inversion it has the advantage of not requiring spatial averaging. The price paid for this 
improvement is the computational cost that increases: operative tools for processing high resolution data 
implements joint SVD/CS inversion with CS used in areas where it is expected to have interference of 
scatterers located at close elevations. 
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4.0 4D AND MULTID SAR IMAGING 

SAR Tomography allows profiling the scattering along the elevation direction. Differential SAR 
Tomography, also referred to as 4D (3D space + velocity) SAR imaging (focusing) is a natural extension of 
SAR Tomography for imaging and monitoring targets that exhibit displacements [22], [23], [24]. It allows 
measuring the scattering distribution in an elevation–velocity (EV) plane, also known as tomo-Doppler 
plane. For each azimuth and range pixel, the presence of peaks in the EV plane identifies scatterers, possibly 
interfering in the same resolution cell if more than one peak is present, located at certain elevations and 
moving with a given velocities.  

By referring to Figure 3, where the acquisitions S1 … SN are now supposed to be acquired at different times 
Ntt ...1 , letting the target P located at elevation s to be characterized by a deformation d(s,tn), we have the 

following model for the signal (after de-ramping): 

 
( )

∫
−−

≈ dsesg nn tsdjsj

n

,42
)( λ

ππζ
γ  (28) 

that extends (3) to the presence of movements. The exponential signal related to the deformation can be 
expanded in Fourier harmonics [23] thus leading to: 

 ( )∫∫ −−= dvdsevsg vjsj
Dn

nn πηπζγ 22
4 ,  

r
bn

n λ
ζ 2

=  
λ

η n
n

t2
=   (29) 

where ν  is the Fourier variable associated with nη ; ν  measures in ms-1 and, hence, assumes the meaning of 
a velocity (spectral velocity). For linear deformation the spectral velocity coincides with the deformation 
rate, whereas for more complex motion, ν  identifies the (velocity) harmonic involved in the motion. 

Inversion of (13) leads to the estimation of the scattering distribution in the EV plane. To this aim, each one 
of the approaches described for the 3D case in Section 3 can be applied by extending the definition of 
steering vector as: 

 [ ] Mmee mNmNmm vjsjvjsj
m ,...1,....., 2222T 11 == −−−− πηπζπηπζa ,  (30) 

where M is the product between the number of bins in elevation and velocities of the grid used for the 
discretization of the 2D integral in (29). 

Beside the separation of elevations and velocities, 4D SAR imaging allows also the separation of time series 
of scatterers affected by layover. Furthermore, and extension to a MultiD SAR imaging case can be done to 
account for the presence of specific deformation models (f.i., seasonal and thermal dilations). 

An example of 4D SAR Imaging product with medium resolutions sensors is shown in Figure 7.  
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Figure 7: Example of 4D Imaging with Medium Resolution Data of the ENVISAT Satellite:  
The images show the detected single (left) and double (right) scatterers overlaid to a  

Google map image. The colour is associated with the mean deformation velocity. 

Differently from PSI, 4D SAR imaging does limit the analysis to single (dominant) scattering and allows the 
separation of interfering scatterers affected by layover. Moreover, even limiting the analysis to single 
scatterers, thanks to the use of amplitude and phase information 4D SAR Imaging allows achieving better 
performances in the scatterers detection and parameter (elevation and velocity) estimation [25].  

With the advent of new high and very high resolution SAR sensors, reaching spatial resolutions up to 1m, 
layover over vertical structures (such as building in urban areas) has become a major problem. SAR 
tomography has been shown to be a helpful processing method that allows synthesizing 3D fine-beam radar 
scanners from the space capable of solving the layover [25], [27] and of achieving improved imaging and 
monitoring complex structures. Figure 8 shows an example of application of SAR tomography to high 
resolution data acquired by the COSMO/SKYMED constellation.  
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Figure 8: Example Application of SAR Tomography to High Resolution (3m) Data  
Acquired in the Strip-Map Mode by the COSMO/SKYMED Constellation Over  

the S. Paolo Stadium. Points coloured according to the topography  
are detected radar scatterer overlaid to a Google map image. 
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